

QuestFields

Custom Content Access Module

Plug-in Configuration and Development Guide
Version 2.1.1

QUESTFIELDS
CUSTOM CONTENT ACCESS MODULE
©2010 MASTEROBJECTS 2

 LEGAL NOTICES

Legal Notices
Copyright © 2010 by MasterObjects, Inc. All rights reserved. U.S. and
international patents pending.

MasterObjects, QuestObjects, QuestField, Questlet, QOP, and the Q Arrow logo
are trademarks or registered trademarks of MasterObjects, Inc. in the United
States and other countries. Other trademarks used in this document are the
property of their respective owners. Screen shots were used to the benefit of
their respective copyright owners, for informational purposes only. Use of
trademarks or screen shots is not intended to convey endorsement or other
affiliation with MasterObjects.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of
the publisher or copyright owner.

MasterObjects has tried to make the information contained in this publication
as accurate and reliable as possible, but assumes no responsibility for errors or
omissions. MasterObjects disclaims any warranty of any kind, whether express
or implied, as to any matter whatsoever relating to this publication, including
without limitation the merchantability or fitness for any particular purpose. In
no event shall MasterObjects be liable for any indirect, special, incidental, or
consequential damages arising out of purchase or use of this publication or the
information contained herein.

MasterObjects, Inc.
1156 Clement Street

San Francisco, CA 94118

info@masterobjects.com
http://www.masterobjects.com

QUESTFIELDS
CUSTOM CONTENT ACCESS MODULE
©2010 MASTEROBJECTS 3

 TABLE OF CONTENTS

Table of Contents
[1]	 Introduction 4	
1.1	 About this Document 4	
1.2	 Custom Components Overview 4	
1.3	 Version History 5	

[2]	 CAM Instance Configuration 6	
2.1	 Settings Reference 6	
2.1.1	 General Custom CAM settings ... 7	
2.1.2	 Custom CAM factory settings... 7	

[3]	 Content Query Configuration 8	
3.1	 Settings Reference 8	
3.1.1	 General Custom Content Query settings ... 8	
3.1.2	 Custom Content Query property settings .. 8	

[4]	 Developing a Custom CAM Plug-In 10	
4.1	 Designing the Custom CAM Plug-In 10	
4.2	 Developer Setup 11	
4.3	 Implementation 12	
4.3.1	 Helper classes... 12	

QuestFields Results .. 12	
4.3.2	 QueryExecutorFactory Interface .. 13	
4.3.3	 QueryExecutor Interface... 15	

[5]	 Glossary 17	

QUESTFIELDS
CUSTOM CONTENT ACCESS MODULE
©2010 MASTEROBJECTS 4

INTRODUCTION

ABOUT THIS DOCUMENT 1.1

[1]
Introduction

1.1 About this Document

This document contains developer documentation for the Custom Content
Access Module (Custom CAM) with Custom Content Queries. The Custom
CAM is part of the QuestFields software development kit (SDK).

This document is intended for use by software engineers with a basic
understanding of the Java programming language. It describes the open API
provided as part of the QuestFields SDK, making it easy to interface the
QuestFields Server with any third-party content source.

For information about the QuestFields Server, please refer to the
QuestFields Server Administration Guide.

For information about the QuestFields Client, please refer to the QuestFields
Client Administration Guide.

1.2 Custom Components Overview

A Content Access Module (CAM) provides a standardized mechanism to connect
the QuestFields system with a content source. A CAM is the “middleware”
between the QuestFields Server and the content sources it works with.
Different CAMs are needed to communicate with various content source types,
such as JDBC-compliant SQL databases (through the JDBC CAM), LDAP-
compliant directory servers (through the LDAP CAM), or flat files (through the
QuestFields Indexer option).

The Custom Content Access Module (Custom CAM) provides the means to create
a connection between the QuestFields Server and any protocol or file. A
Custom CAM is created in the Java programming language. The Custom CAM
API uses simple predefined Java classes to connect to your proprietary
protocol, web service, or files.

The resulting Custom CAM is compiled as a "jar file" and is placed into the
plug-ins directory of the QuestFields Server. A Custom CAM implementation
is therefore considered a "server plug-in". Using this guide and the files
provided with the SDK, MasterObjects partners and customers can easily
develop and maintain their own QuestFields Server plug-ins.

Intended Audience

Related Documents

Custom Content
Access Module

Server Plug-in

QUESTFIELDS
CUSTOM CONTENT ACCESS MODULE
©2010 MASTEROBJECTS 5

INTRODUCTION

VERSION HISTORY 1.3

⇒ Please note: Deployment of custom CAMs requires an addition to QuestFields
Server license.

A Custom Content Query holds the configuration for a predefined type of
query to be executed by the Custom CAM. When you develop a CAM, you can
make it work for any number of query definitions.

1.3 Version History

This chapter lists the changes for every release of this document.

- Covers the first release of the Java Content Access Module.

- Changed into U.S. Letter page layout.

- Added collator-additional-rule configuration item.

- Renamed to "Custom Content Access Module";

- Updated the document for QuestFields Server release 2.0.

- Updated the document for QuestFields Server release 2.1.

- Various textual improvements.

Custom Content
Query

1.0.0

1.0.0L

1.0.1

2.0.0

2.1.0

2.1.1

QUESTFIELDS
CUSTOM CONTENT ACCESS MODULE
©2010 MASTEROBJECTS 6

CAM INSTANCE CONFIGURATION

SETTINGS REFERENCE 2.1

[2]
CAM Instance Configuration
The Custom CAM uses the "factory" design pattern to create connections to the
proprietary protocol or files. This means that the QuestFields Server asks a
custom factory object for an instance of a connection, which is subsequently
used to execute QuestFields queries and return results to the QuestFields
Server in a simple generic format.

A Custom CAM is configured using XML files in the "QuestFields Home"
directory, just like the JDBC and LDAP CAMs that are bundled with the
QuestFields Server. So you can make your Custom CAM configurable so it
works with multiple sets of data or tables (as long as they can be queried using
the protocol for which you develop the Custom CAM).

A Custom CAM instance configuration contains the location of the plug-in
directory, custom factory-specific configuration parameters to create and use
for creating the connections, and a Boolean value that indicates whether the
custom results are pre-sorted or not (determining whether or not the
QuestFields Server will need to perform another sort as configured in the
QuestFields content channel).

The CAM instance configuration is used to configure the connection to the
proprietary protocol or files. The actual query is defined in the content query
configuration (see section [3]).

2.1 Settings Reference

The Custom Content Access Module instance is configured using the
configuration file named {CAM-Id}.xml, located in the QuestFields CAM
configuration directory, QO_HOME/conf/cams. The configuration file is in XML
format and is encoded in the UTF-8 character encoding. The settings file can
contain comments in standard XML format.

The Id of a Content Access Module instance, used internally in the QuestFields
system to identify the CAM instance, is the name of the CAM’s configuration
file, without the .xml suffix.

The file starts with <customCam id="{CAM-Id}"> and ends with
</customCam>. The elements contained in the configuration file are described
below.

Factory

QUESTFIELDS
CUSTOM CONTENT ACCESS MODULE
©2010 MASTEROBJECTS 7

CAM INSTANCE CONFIGURATION

SETTINGS REFERENCE 2.1

2.1.1 General Custom CAM settings

Use: An optional path to the Custom CAM's directory. If not specified,
QO_HOME/plugins is assumed. You may either specify the path
relative to the default plugins directory or the full path.

All jar files in the Custom CAM's directory will end up on the class
path of the Custom CAM.

Value type: String.

2.1.2 Custom CAM factory settings

Use: Name of the factory class (including the package name), e.g.
com.your_domain.questfields.cam.specialsearch.Factory

Value type: String.

Use: An optional list of factory properties.

Value type: List of <entry> elements.

Use: One factory property.

Value type: Contains <key> and <value> elements.

Use: Name of factory property.

Value type: String.

Use: Value of factory property.

Value type: String.

pluginDirectory

factoryClassName

factoryProperties

entry

key

value

QUESTFIELDS
CUSTOM CONTENT ACCESS MODULE
©2010 MASTEROBJECTS 8

CONTENT QUERY CONFIGURATION

SETTINGS REFERENCE 3.1

[3]
Content Query Configuration
A Custom CAM needs at least one Custom Content Query configuration,
which is used to execute queries once the Custom CAM instance is loaded by
the QuestFields Server. The Custom Content Query configuration holds
predefined information about how to query the proprietary protocol or files.

Each Custom Content Query configuration holds CAM-specific "name value
pair" properties. These properties together form a predefined query (a method
of querying) that is called (executed) by the QuestFields Server through the
Custom CAM.

3.1 Settings Reference

A Custom Content Query is configured using the configuration file named
{custom_content_query_id}.xml, located in the QuestFields Content Query
configuration directory, QO_HOME/conf/content-queries. The configuration
file is in XML format and is encoded in the UTF-8 character encoding. The
settings file can contain comments in standard XML format.

The id of a channel, used internally in the QuestFields system to identify the
channel, is the filename of the channel’s configuration file without the .xml
suffix.

The file starts with <customContentQuery
id="{custom_content_query_id}"> and ends with </customContentQuery>.
The elements contained in the configuration file are described below.

3.1.1 General Custom Content Query settings

Use: Id of the Custom Content Access Module instance used by the
Content Query (see section [2]).

Value type: String.

3.1.2 Custom Content Query property settings

Use: An optional list of custom factory properties.

Value type: List of <entry> elements.

camId

contentQueryProperties

QUESTFIELDS
CUSTOM CONTENT ACCESS MODULE
©2010 MASTEROBJECTS 9

CONTENT QUERY CONFIGURATION

SETTINGS REFERENCE 3.1

Use: For each custom CAM factory property.

Value type: Contains <key> and <value> elements.

Use: Name of a custom property.

Value type: String.

Use: Value of a custom property.

Value type: String.

entry

key

value

QUESTFIELDS
CUSTOM CONTENT ACCESS MODULE
©2010 MASTEROBJECTS 10

DEVELOPING A CUSTOM CAM PLUG-IN

DESIGNING THE CUSTOM CAM PLUG-IN 4.1

[4]
Developing a Custom CAM Plug-In
A Custom CAM plug-in is a QuestFields Server Content Access Module (CAM)
that is customized to connect to a proprietary protocol or file. A Custom CAM
plug-in is programmed in the Java programming language.

The design of the plug-in conforms to the Factory pattern as described in
“Design Patterns” by Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides (also called the "Gang of Four" book, ISBN 0-201-63361-2).

To create the plug-in, two Java interfaces must be implemented. One interface
defines the query executor factory class and the other interface defines the query
executor class. Various additional helper classes are available. For example, one is
used to hold an array of Results and another is used for Exceptions that might
occur in the plug-in.

4.1 Designing the Custom CAM Plug-In

The first step is to separate the query from the protocol.

- The protocol is defined by the combination of syntax and semantics
describing a certain type of queries (e.g. SELECT or INSERT statements in SQL)
and the way those queries are transported to the backend system (e.g. the
address of the server to be queried and the third-party libraries to be linked
to).

In the context of a Custom Plug-in, a connection is regarded to be an instance
of the protocol. Protocol configuration data can be defined in the CAM
configuration file as name-value pairs (see chapter [2]).

- The query is the actual "question" (for example, SELECT * FROM MYTABLE1).
Query configuration data can be defined in the Content Query configuration
file as name-value pairs (see chapter [3]).

The query itself should be divided into a static and a dynamic part:

- The static part is the non changing part of the queries that need to be
executed (for example SELECT ? FROM MYTABLE, where ? is to be filled in
later). This part is configured in the Content Query configuration file.

- The dynamic part is different for each query (above, it is the ? that is filled in
for each query). This is what the user types into the QuestField or what is
passed to the QuestFields Server as an additional qualifier.

QUESTFIELDS
CUSTOM CONTENT ACCESS MODULE
©2010 MASTEROBJECTS 11

DEVELOPING A CUSTOM CAM PLUG-IN

DEVELOPER SETUP 4.2

If the static part of the query is too complex for it to be defined by name-value
pairs, another option is to create different methods or even classes and to use a
name-value pair as a switch to determine which method (or which class)
should be used.

So how do these 3 parts relate to the 2 interfaces that need to be implemented?

The QueryExecutorFactory configures the protocol and provides
QueryExecutor instances by request. Before creating a QueryExecutor, the
factory ensures that the QueryExecutor has a connection and a valid static part
of the query.

The QueryExecutor instance receives the dynamic part of the query and
executes the query by feeding it to the connection. After the QueryExecutor
has handed the results over to the QuestFields Server, it is returned to the
QueryExecutorFactory so the factory can handle the destruction of the
QueryExecutor.

⇒ Note: instead of creating and destroying QueryExecutor instances, it is
possible to maintain a pool of them. Explanation on how to create and
maintain a "connection pool" is beyond the scope of this document. For
assistance, please contact MasterObjects.

Custom CAM query execution overview

4.2 Developer Setup

To develop the Custom CAM plug-in you need the following jar files available
during compilation:

QUESTFIELDS
CUSTOM CONTENT ACCESS MODULE
©2010 MASTEROBJECTS 12

DEVELOPING A CUSTOM CAM PLUG-IN

IMPLEMENTATION 4.3

log4J-1.2.8.jar,
questobjects-base.jar,
questobjects-service.jar.

These jar files are included in the lib directory of QuestFields Software
Development Kit (SDK) on the QuestFields CD.

⇒ Do not package these jar files into your plug-in because they are available to
the QuestFields Server already.

The com.masterobjects.qo.external.customplugin package, which
contains the interfaces and helper classes of the Custom CAM, is contained in
questobjects-service.jar. The other jar files mentioned above are needed
by classes in questobjects-service.jar, but they are not called directly by
the custom plug-in.

After compilation, package the plug-in classes into a new jar file. Then, place
the jar file and its dependencies into the configured plug-in directory and
restart the QuestFields Server (see chapter 2.1.1).

4.3 Implementation

Classes and interfaces that are needed to create the plug-in are available in the
com.masterobjects.qo.external.customplugin package, and are described
by the javadocs included with the SDK. The logging is done through the
Logger class and is a part of Log4J.

4.3.1 Helper classes

Helper class names start with QoCustom, with the exception of the Logger.

Use: The Logger is a Log4J logging class and should be used to log
messages. For more information on the Logger class please review
the JavaDoc of Log4J.

Use: This class provides utility methods that can be used by the Custom
CAM plug-in. For descriptions, see the JavaDocs provided with the
SDK.

 Use: This class must be used to wrap all Exceptions that can occur in the
factory and in the QueryExecutor.

Use: This class must be used to build the result set, which will be used
by the server to show the results to the user. Instantiate this class
and use the addResult method to add each result.

QuestFields Results

A result returned by a Custom Access Module can consists of 4 parts:

- An optional key, which can be used to contain a compound value that needs
to be returned by the HTML form into which the QuestField is placed (for
example “JOHN_SMITH_DEP5_CA”). This property may be null.

Logger

QoCustomUtils

QoCustomException

QoCustomResults

QUESTFIELDS
CUSTOM CONTENT ACCESS MODULE
©2010 MASTEROBJECTS 13

DEVELOPING A CUSTOM CAM PLUG-IN

IMPLEMENTATION 4.3

- A value, which is the result that is displayed to the user and that is used to
correct the input of the user (for example “John Smith”). This property is
mandatory.

- Optional metadata, which is an array of Strings. This is typically shown in the
pop-up list of the QuestField as extra information (for example
{“DEP5”;”CA”}). This property may be null.

- An optional type, as defined in class QoCustomResultType. This property
defaults to 0 for "normal" results.

4.3.2 QueryExecutorFactory Interface

The QueryExecutorFactory interface defines the methods that must be
implemented in a factory class so it can be used by the Custom CAM.

The Custom CAM uses the factory to get QueryExecutor instances, which it
uses to execute queries.	
 This is an implementation of the Factory pattern in
Design Patterns (the GoF book).	
 The factory must have a default constructor (a
constructor without arguments).	
 Initialization based on configuration
information in the CAM configuration file must be done in the init method.

The order of calls is:	

At startup:
1) Constructor 2) init	
 3) getKeys 4) testConnection	

When querying (which can happen by multiple threads at the same time!):
1) getExecutor	
 2) returnExecutor

At shutdown:
1) shutdown

At any time after calling the constructor:
- getBuildNumber, getName, getManufacturer

The init method is called to initialize the Factory.	

Passed parameters:

- factoryProperties contains properties that were read from the CAM
configuration file, plus standard properties defined by the keys in class
QoStandardContentAccessModulePropertyKeys. These standard
properties include the full path of the actual plug-in directory used (derived
from the –possibly relative or undefined-- pluginDirectory property of the
CAM configuration).

- Logger is a Log4J Logger instance that can be used to log messages to the log
files.	

Return value: void

Exceptions thrown:

- QoCustomException should wrap any exception that occurs within the init
method.

init

QUESTFIELDS
CUSTOM CONTENT ACCESS MODULE
©2010 MASTEROBJECTS 14

DEVELOPING A CUSTOM CAM PLUG-IN

IMPLEMENTATION 4.3

The testConnection method tests whether the connection is available. If this is
not the case the Java CAM will not accept queries.

Passed parameters:

- contentQueryProperties are properties that are defined in the Content
Query configuration file, plus standard properties defined by the keys in
class QoStandardContentQueryPropertyKeys. These standard properties
include the Id of the content query.

Return value: An array of String, containing the keys that need to be filled in by
the Channel when executing a Custom Content Query, and which are the keys
available in the query HashMap in QueryExecuter.executeQuery for the
QueryExecuter that was retrieved with the same contentQueryProperties in
the getExecutor.

Exceptions thrown: None

The testConnection method tests whether the connection is available. If this is
not the case the Custom CAM will not accept queries.

Passed parameters: None

Return value: void

Exceptions thrown:

- QoCustomException should wrap any exception that occurs within the
testConnection method.

The getExecutor method returns a class that implements the QueryExecutor
interface. It can use the supplied contentQueryProperties to initialize the
QueryExecutor with the right properties.	

⇒ This method may be called by multiple threads at the same time. Make sure
that all shared resources (like class/object attributes) are either locked or
accessed in a synchronized manner to avoid deadlocking.	

Passed parameters:

- contentQueryProperties are properties that are defined in the Content
Query configuration file.

- maxResults is the maximum number of results that should be returned.
This is set in the channel configuration.

- queryTimeOut is the maximum time it should take to get a result. This is set
in the channel configuration.

Return value: QueryExecutor is returned for the use by the Custom CAM.

Exceptions thrown:

- QoCustomException should wrap any exception that occurs within the
getExecutor method.

The returnExecutor method is called after a QueryExecutor is used.	
This
enables the factory to pool or to safely dispose of the QueryExecutor.

getKeys

testConnection

getExecutor

returnExecutor

QUESTFIELDS
CUSTOM CONTENT ACCESS MODULE
©2010 MASTEROBJECTS 15

DEVELOPING A CUSTOM CAM PLUG-IN

IMPLEMENTATION 4.3

⇒ This method may be called by multiple threads at the same time. Make sure
that all shared resources (like class/object attributes) are either locked or
accessed in a synchronized manner to ensure that deadlocking won't occur.	

Passed parameters:

- QueryExecutor returned by the Custom CAM after use.

Return value: void

Exceptions thrown: None

The shutdown method is called by the Custom CAM at shutdown (when the
server is shut down, the Custom CAM is called so that it can clean up). This is
used to safely close and shut down systems used by the factory.

Passed parameters: None

Return value: void

Exceptions thrown: None

The getBuildNumber method is called by the Custom CAM. This is used by the
QuestFields Server to retrieve the build number of the Java plugin.

Passed parameters: None

Return value: A String containing the build number.

Exceptions thrown: None

The getName method is called by the Custom CAM. This is used by the
QuestFields Server to retrieve the name of the Java plugin.

Passed parameters: None

Return value: A String containing the name.

Exceptions thrown: None

The getManufacturer method is called by the Custom CAM. This is used by
the QuestFields Server to retrieve the name of the manufacturer of the Java
plugin.

Passed parameters: None

Return value: A String containing the name of the manufacturer.

Exceptions thrown: None

4.3.3 QueryExecutor Interface

The QueryExecutor interface should be implemented by the class that actually
executes the query.

shutdown

getBuildNumber

getName

getManufacturer

QUESTFIELDS
CUSTOM CONTENT ACCESS MODULE
©2010 MASTEROBJECTS 16

DEVELOPING A CUSTOM CAM PLUG-IN

IMPLEMENTATION 4.3

The executeQuery method is called by the Java CAM to execute a query.	
This
method should be implemented by the query executer instance that was
returned by the QueryExecutorFactory.	

Passed parameters:

- queryItems is a Map containing key value pairs. The keys are the keys as
defined by the QueryExecutorFactory.getKeys.

Return value: QoCustomResults contains the results of the query. The
executeQuery should also set the setComplete on the results if the results
aren’t complete (if there are more results than maxResults) and setSorted if
the results are sorted.

⇒ Note that if the results are sorted that they are sorted in the same way as
defined in the channel configuration. If not, make sure that only one Content
Query is called for every query that enters the Channel. Else the result might
not be in the order that is expected. This will be fixed in a future version of the
server.

Exceptions thrown:

- QoCustomException should wrap any exception that occurs within the
executeQuery method.

executeQuery

QUESTFIELDS
CUSTOM CONTENT ACCESS MODULE
©2010 MASTEROBJECTS 17

GLOSSARY

IMPLEMENTATION 4.3

[5]
Glossary
A Content Access Module (CAM) provides a standardized mechanism to link
the QuestFields system to a Content Engine. A CAM is the “middleware”
between the QuestFields system and the content sources it works with.
Different Content Access Modules are needed to communicate with various
content sources, such as JDBC-compliant SQL databases (through the JDBC
CAM), LDAP-compliant directory servers (through the LDAP CAM), or flat
files (through the QuestFields Indexer CAM).

One of the services configured on the QuestFields Server, linking a QuestField
to one or more Content Queries and returning appropriate results from those
Content Queries.

A pre-configured query for a specific CAM. To be used by that CAM to return
results (answers) to the QuestFields system.

Java Database Connectivity (JDBC) is a standard application program interface
specification for connecting programs to the data in popular databases.

Lightweight Directory Access Protocol (LDAP) is a standard application
program interface for connecting programs to the data in corporate directories.

A user interface element that sends queries to, and receives results from the
QuestFields Server.

CAM

Content Channel

Content Query

JDBC

LDAP

QuestField

